Dual CoMe Seminar by Alessandro Lucantonio /// Giovanni Noselli (SISSA-- International School for Advanced Studies--Trieste Ital

dijous, 2 juliol, 2015

Hydraulic fracture and toughening of a brittle layer bonded to a hydrogel
By Alessandro Lucantonio  from SISSA

And

Biological crawling and swimming micro-organisms: a case study in shape control for locomotion purposes
By Giovanni Noselli from SISSA

Date: July 3rd 2015, Friday, 12:00 h
Location: Room 212, Building C2, Campus Nord UPC

Detailed information can be found at the following link: https://www.lacan.upc.edu/node/720

Alessandro Lucantonio:

Brittle materials propagate opening cracks under tension. When stress increases beyond a critical magnitude, then quasi-static crack propagation becomes unstable. In the presence of several pre-cracks, a brittle material always propagates only the weakest crack, leading to catastrophic failure. Here, we show that all these features of brittle fracture are fundamentally modified when the material susceptible to cracking is bonded to a hydrogel, a common situation in biological tissues. In the presence of the hydrogel, the brittle material can fracture in compression and can hydraulically resist cracking in tension. Furthermore, the poroelastic coupling regularizes the crack dynamics and enhances material toughness by promoting multiple cracking.

Giovanni Noselli:

Bio-­‐inspired  motility  is  a  fascinating  topic  of  active  current  research,  with  a  significant  potential  for  new  technological  applications.  Cells  and  unicellular  organisms  provide  striking  examples  of  microscopic selfpropelled  objects,  with  length  scales  in  the  range  from  one  to  one-­‐hundred  microns,  that  are  able  to  move freely inside the human body. Learning these skills from biological organisms requires, in particular, that we learn how to move and control continuously deformable objects. Just like their biological templates, devices capable of large elastic deformations can exhibit superior dexterity and manoeuvrability than more standard  robotic  constructs  based  on  the  articulation  of  few  rigid  links.  This  is,  in  fact,  an  instance  of  soft  robotics, a new paradigm in robotic science, where novel designs are inspired by the study of how animals exploit soft materials to move effectively in complex and unpredictable natural environments. We will report on  some  recent  case  studies  on  biological  and  bio-­‐inspired  locomotion  in  which,  starting  from  the  observation  and  the  mathematical  modelling  of  a  motile  organism  (unicellular  swimmers,  snails, earthworms),  we  distill  some  of  the  key  mechanisms  at  work  in  the  biological  templates  with  the  aim  of  reproducing them in artificial bio-­‐inspired devices.